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ABSTRACT 

There are two commonly used techniques in image fusion techniques: multi-scale transform (MST) and 

sparse representation (SR). This paper presents the combination of MST and SR to overcome the defects in 

the MSF-GIF-based fusion technique. In our method, the MST is firstly performed on both MRI images and 

PET images and then we obtain low-pass and high-pass coefficients. The low-pass coefficients are dealt with 

SR base fusion methods. We have done the MST decomposition using discrete wavelet transform. Finally, 

we get our final fused image by doing an inverse multi scale transform. The advantages of our proposed 

method are it exhibits detailed information compared to the experimental results shown by MSF-GIF final 

results. By comparing the parameters of fused images subjectively and objectively, we get the best-

performed fusion method under the proposed framework for each category of image fusion. Furthermore, 

experimental results show that the proposed fusion method can obtain good performance for the fusion of 

multimodal images. 
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1. INTRODUCTION 

Image fusion has become a contentious issue in the image processing field in recent years. The goal of image 

fusion is to create a composite image by combining complementary information from numerous source 

images of the same scene into a single composite image. It is challenging to obtain an image that contains all 

of the image's important information. Along with the required image, an image may contain background 

images. 

Due to its restricted focusing skills, the background and needed content may not be caught. A very 

significant element is capturing an image with all of the information from the original image. There are 

numerous image fusion methods that have a wide range of applications in medical imaging, satellite imaging, 

remote sensing, and other fields. Medical imaging applications are taken into account in our project. 

Image fusion is a technique for extracting information from many images and combining it into a single 

image to improve perception.  Fused images are more informative and more compatible with human sight. 

As a result, they're used in a variety of applications to improve their performance, including medical 

imaging, surveillance, military, and remote sensing. Multi-focus, multi-view, and multi-modal situations are 

examples of fusing scenarios. 

 

 

 

http://doi.org/10.36893/JNAO.2022.V13N1.841-848


842                                                                                  JNAO Vol. 13, No. 1, (2022) 

http://doi.org/10.36893/JNAO.2022.V13N1.841-848 
 
 

2 PRELIMINARIES 

PRELIMINARY CONCEPTS 

2.1 IMAGEFUSION 

Image fusion is the process of combining many photos from various sources with their corresponding 

complementary information to create a new image that contains all of the common and complementary 

elements of the original images. Multisensory systems have become a reality in a variety of sectors, 

including remote sensing, medical imaging, machine vision, and military applications, thanks to recent rapid 

advances in imaging technologies. By extracting all of the useful information from the source photos, image 

fusion is an effective technique for decreasing the growing number of data. Image fusion is a useful tool for 

comparing and analyzing multi-sensor data with complementary information about the area in question. 

Image fusion generates new images that are better suited to human and machine perception.The goal of 

picture fusion is to create images that are more appropriate and intelligible for human and machine 

perception, not just to minimize the amount of data. 

Multisensor image fusion is a computer vision technique that combines pertinent information from two or 

more images into a single image.We combined medical photos in this project. 

AnAccurate diagnosis requires data from many modality images, such as Magnetic Resonance Imaging 

(MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and others, which can be 

gathered using the Image Fusion method. 

 
Fig.1. Target Detection using Image Fusion 

 

2.2MULTISCALE TRANSFORM 

For the fusion of MST low-pass bands, the sparse coding approach is used in this study. Sampling from the 

matching MST low-pass bands acquired from some training images under the same decomposition condition 

is one technique to get the training patches. 

We hope to learn a universal vocabulary that can be used in any transform domain and parameter settings in 

this project. The MST low-pass band created by image filtering can be thought of as a smooth version of the 

original image, as is widely known. Because a dictionary learned from natural image patches can sparsely 

represent the various "flat" patches found in a natural image. 

In order for an input patch to be represented, it must also have a mean value. 

2.3 IMAGE DECOMPOSITION 

The Wavelet Transform converts a signal into a time-frequency representation. It was created to address a 

flaw in the Short Time Fourier Transform (STFT), which can be used to examine non-stationary signals as 

well. While the STFT maintains a consistent resolution across all frequencies, the Wavelet Transform 

employs a multi-resolution approach that analyses different frequencies with different resolutions. 

The Discrete Fourier Transform (DFT) decomposes a signal into sinusoidal basis functions of various 

frequencies in Fourier analysis. This transformation does not lose any information; in other words, the 

original signal may be fully recovered from its DFT (FFT) representation. The Discrete Wavelet Transform 

(DWT) decomposes a signal into a set of mutually orthogonal wavelet basis functions in wavelet analysis. 
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These functions differ from sinusoidal basis functions in that they are spatially localised, meaning that they 

are nonzero only across a portion of the whole signal duration. Wavelet functions are also dilated, translated, 

and scaled variants of the mother wavelet, which is a common function.The DWT is invertible, just like 

Fourier analysis, therefore the original signal can be reconstructed completely from its DWT form. 

Unlike the DFT, the DWT refers to a collection of transforms, each having its own set of wavelet basis 

functions. The Haar wavelets and the Daubechies wavelets are two of the most popular. Figures 1 and 2, for 

example, show the complete set of 64 Haar and Daubechies-4 wavelet functions. We will not get into the 

intricacies of how these were generated here; nonetheless, the following crucial qualities should be noted: 

1. Wavelet functions are spatially localized; 2. Wavelet functions are dilated; 3. Wavelet functions are 

dilated; 4. Wavelet functions are dilated; 5. Wavelet functions are dilated 

2.4SPARSE REPRESENTATION: 

Sparse representation theory proposes a new, extremely effective, and ubiquitous paradigm of this type. Its 

key concept is that data is described as a linear combination of a few building pieces - atoms - selected from 

a pre-defined dictionary of such fundamental elements. 

3 PROPOSED METHODOLOGY BLOCK DIAGRAM 

The Image Fusion process involves some methods to obtain the final result and they are mentioned in the 

block diagram.  

Different images with different image principles are used which are given as source images. The images used 

were x-ray, MRI images, and PET images. 

For the fusion of MST low-pass bands, the sparse coding approach is used in this study. Sampling from the 

matching MST low-pass bands acquired from some training images under the same decomposition condition 

is one technique to get the training patches. 

We hope to learn a universal vocabulary that can be used in any transform domain and parameter settings in 

this project. The MST low-pass band created by image filtering can be thought of as a smooth version of the 

original image, as is widely known. Because a dictionary learned from natural image patches can sparsely 

represent the various "flat" patches found in a natural image. 

 

Fig.2.  Block Diagram showing image fusion process 

3.1 IMAGE RESIZE 

When you enlarge or distort an image from one-pixel grid to another, you're using image interpolation. When 

you need to increase or decrease the total amount of pixels in an image, you'll need to resize it, whereas 

you'll need to remap it if you're correcting for lens distortion or rotating it. 

3.2 Multi scale transform 

Step1: MST decomposition- perform a specific MST on the two source image {𝐼𝐴, 𝐼𝐵} to obtain their low 

pass bands {𝐿𝐴, 𝐿𝐵} and high pass bands which are uniformly denoted as {𝐻𝐴, 𝐻𝐵}. 

Step2: Low pass image fusion 
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i. apply sliding window technique to divide 𝐿𝐴 𝑎𝑛𝑑 𝐿𝐵 into image patches of size √𝑛 × √𝑛 from upper left to 

lower right with a step length of s pixels. 

ii. For each position 𝑖 rearrange {𝑝𝐴
𝑖 , 𝑝𝐵

𝑖 } into two column vectors {𝑣𝐴
𝑖 , 𝑣𝐵

𝑖 } and then normalize each vectors 

mean value to zero. 

iii. Calculate the sparse coefficient vectors 

iv. Merge 𝛼𝐴
𝑖  𝑎𝑛𝑑 𝛼𝐵

𝑖  with the ‘‘max-L1’’ rule to obtain the fused sparse vector. 

v. Iterate the above process for all the source image patches to obtain all the fused vectors. 

Step 3: High-pass fusion. 

Merge 𝐻𝐴 and 𝐻𝐵 to obtain 𝐻𝐹with the popular ‘‘max-absolute’’ rule using the absolute value of each 

coefficient as the activity level measurement. Then, apply the consistency verification scheme to ensure that 

a fused coefficient does not originate from a different source image from most of its neighbors. This can be 

implemented via a small majority filter. 

Step 4: MST reconstruction. 

Perform the corresponding inverse MST over LF and HF to reconstruct the final fused image𝐼𝐹. 

3.3 SPARSE REPRESENTATION 

With the help of the complete functions accessible in MATLAB, the SR-based methodology calculates the 

coefficients of a sparse matrix. Then, using the specified max absolute methodology, these coefficients are 

blended. Finally, the merged image is reconstructed using the functions from the merged coefficients of the 

SR representation. 

Using an over-complete dictionary D, the signal x can be represented as a linear combination of dictionary 

atoms in the sparse representation theory  

 x=Dx=D   (1) 

 

 

 

 

 

 

 

Fig.3. sparse representation matrix 

Sparse representations are created using a basis that takes advantage of the input signals' regularity, resulting 

in a large number of small-amplitude coefficients. Because wavelets have localized support, functions with 

isolated singularities create a small number of large-amplitude wavelet coefficients in their vicinity. Over 

spaces of functions with "not too many" sharp transitions and singularities, nonlinear wavelet approximation 

gives a minimalinaccuracy. Functions with a restricted total variation norm are suitable models for images 

with nonfractal (finite length) edges. 

4. Advantages of the proposed method over individual MST or SR 

The MST-based fusion method has a number of disadvantages, including low-band averaging and 

the loss of the majority of the image energy.  referred to in the first part,An illustration will help to clarify the 

situation.  The multi-modal pictures seen in are made up of a pair ofpictures visible and MMW The multi-

modal pictures' source images Varied sensors contribute to the fusion, and each sensor receives a different 

amount of data.  from the same scene, various physical traits As much as is possible. The visible image, as 

seen in Fig. 4, reveals edges and textures, whereas the hidden image does not.  A bright patch in the image 

can be used to detect the hidden metallic object.the millimeter image. The sum of grey levels squared is a 
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number. A measurement of the image's energy the higher the grey levels, the better. The brighter regions 

were the result of the energy.  

By using SR on the low-pass bands, the proposed strategy can fix the problem. In fact, in the SR 

approach, subtracting the mean value from the patches maintains the majority of the source image's energy 

and transfers it to the final fused image. Determining the decomposition levels of the MST-based fusion 

approach is another challenge. A significant number of breakdown stages must be chosen in order to retrieve 

enough features. Low-band coefficients, on the other hand, can occur, affecting a large number of pixels. As 

a result of the misregistration, a small noise or error appears in the source image, resulting in a distorted 

fused image. In contrast, the suggested method uses the SR method to extract low band spatial information, 

and four decomposition levels are sufficient. 

The following is how our proposed technique overcomes the problems mentioned: 

i. The SR approach is applied to the image's low band. Because there are no critical features in the low band 

and they are truly in the upper bands, sliding widow might choose large step. As a result, the 'blocking effect' 

becomes less effective. 

ii. The low band of a picture in most MSTs is much smaller than the source image. As a result, the cost of 

computing SR is greatly decreased, and the second problem is eliminated. 

5. EXPERIMENTAL RESULTS 

5.1 OBJECTIVE IMAGE QUALITY METRICS: 

The objective evaluation approach calculates and obtains numerical values for the fused images using 

mathematical procedures, which measure the degree of distortion between the fused and input images. For 

measuring the retention of edges and textures, the amount of detail contrast, aIt is used to measure the overall 

activity level of the space in the image. The larger the SFof the fused image, the richer the information it 

contains, and the better the fusion method has performed. It is defined as follows: 

𝑆𝐹 = √𝑅𝐹2 + 𝐶𝐹2(2) 

Natural image quality evaluator (NIQE):it evaluates the quality of the fused images when the type of 

fused image distortion is unknown. The smaller the NIQE,the higher the fusion performance. It is defined as 

follows: 

NIQE = √(𝜇1 − 𝜇2)𝑇 . (
𝜎1+𝜎2

2
)−1. (𝜇1 − 𝜇2) (3) 

Tone-mapped image quality Index (TMQI):It is an index for measuring the degree of loss of the fused 

image contrast information and luminance information. The larger the value is, the better the fusion result. 

𝑇𝑀𝑄𝐼(𝐼𝑅 , 𝐼𝐹) = 𝑎𝑇𝛼 + (1 − 𝑎)𝑀𝛽                                                                                       (4) 

where T and M represent the structural fidelity and the statistical properties, respectively, of the image and 

the values of the constants are a=0.8012,  𝛼 =0.3046, and  𝛽 =0.7088. 

Edge intensity (EI):It is used to detect the edges of the image and a larger value of EI corresponds to richer 

edge information in the image. 

EI=
𝟏

𝑴×𝑵
× ∑ ∑ √𝑮𝒙 (𝒊, 𝒋)𝟐 + 𝑮𝒚(𝒊, 𝒋)𝟐𝑴

𝒊=𝟏
𝑵
𝒋=𝟏 (5) 

Mutual information (MI):It is used to calculate the information correlation between the fused image and 

the input source images. The larger the value of MI, the larger the amount of source image information that is 

contained in the fused image. 

MI(𝑰𝑹, 𝑰𝑭) =  
𝑯(𝑰𝑹)+𝑯(𝑰𝑭)−𝑯(𝑰𝑹,𝑰𝑭)

𝑯(𝑰𝑹)+𝑯(𝑰𝑭)
(6) 

Edge-dependent fusion quality index (Qe):It is used to measure the edge information. 

𝑄𝑒(𝐼𝑅 , 𝐼𝐹) = 𝑤. 𝑄𝑤𝑏(𝐼1, 𝐼𝐹) + (1 − 𝑤) × 𝑄𝑤𝑏(𝐼2, 𝐼𝐹)                                                            (7) 

where 𝑄𝑤𝑏denotes average value between the reference image and the fused image. The larger the value of 

𝑄𝑒, the better the fused image. 

Entropy (EN):It measures the information in the fused image. 
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EN(𝑰𝑭) =  − ∑ 𝒑𝒙(𝑰𝑭)𝒍𝒏𝒑𝒙 (𝑰𝑭 )𝟐𝟓𝟓
𝒙=𝟎 (8) 

𝑸𝒂𝒃/𝒇:It measures the success of edge information transfer from the input images to the fused image. 

Quality-aware clustering (QAC) 

It is used to predict features via machine learning. The smaller the QAC value is, the less distortion in the 

fused image. QAC consists of two stages: training and testing. In the stage of training, distortion models, 

such as Gaussian noise, blur, JPEG, and JPEG 2000 compression, are trained using machine learning 

methods. In the stage of testing, QAC is calculated as the sum of Zl: 

QAC(𝑰𝑭) =  
𝟏

𝑳
∑ 𝒛𝒍

𝑳
𝒍=𝟏 (9) 

j. Average gradient (AG) 

It represents the details of the image contrast and texture features using horizontal gradient and vertical 

gradient 

AG(𝑰𝑭 ) =  
𝟏

(𝑴−𝟏)(𝑵−𝟏)
× ∑ ∑ √

(∆𝒙𝑰𝑭 (𝒊,𝒋))𝟐 +(∆𝒚𝑰𝑭 (𝒊,𝒋))𝟐

𝟐
𝑵−𝟏
𝒋=𝟏

𝑴−𝟏
𝒊=𝟏 (10) 

k. Spatial-spectral entropy-based quality (SSEQ) 

It is used to evaluate the quality of a distorted image across unknown distortion groups. SSEQ utilizes local 

spatial entropies and local spectral entropies to predict the image quality score.  The distorted image is 

predicted using a 12-dimensional feature vector f. 

SSEQ is calculatedby applying the function libsvmon the feature vector𝑺𝑺𝑬𝑸 = 𝒍𝒊𝒃𝒔𝒗𝒎(𝒇)(11)      

5.2 OBJECTIVE EVALUATION: 

PARAMETERS MSF-GIF MST-SR 

SF 0.094442 0.097174 

NIQE 61.482414 58.114560 

TMQI 0.650795 0.965350 

EI 89.177473 93.203223 

MI 5.292621 6.897078 

QE 0.993626 0.994733 

EN 5.039720 5.437674 

QAC 0.514461 0.415559 

AG 0.039708 0.049143 

Qab/f 0.731523 0.894119 

SSEQ 0.333208 0.328313 

 

5.3 SUBJECTIVE EVALUATION 
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Input MRI ImageInput PET       Fused MSF-GIF IMAGE         Fused MST- SR Image 

Fig. 4: Subjective experimental results 

CONCLUSION 

The MST-SR fusion approach is used in this paper to present an effective multimodal medical picture fusion 

solution. The results show that fusion based on MST-SR produces better results than fusion based on guided 

filter and salient features extraction. Because the fusion products have more complete structures and colour 

features, as well as crisper edges and textures, the experimental results show that the method can be 

effectively applied to MRI-PET fusion. 
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